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Let us consider a semi-infinite crack in an anisotropic plate
whose thickness is 2h. It is assumed that the plane of the crack is
parallel to the plate boundaries and that it is kept open by certain
external stresses, The positioning of the crack relative to the plate
boundaries is shown in Fig. 1; a plane problem is being considered.
Let us study the propagation of the crack as a result of an increase
in the external load.

A narrow equilibrium crack may be formally described [1] as
an aggregate of equilibrium dislocations at the crack edges. The
Burgers vectors of these dislocations are normal to the crack plane.
This approach is identical with the method developed by Barenblatt
[2].

If the dislocation density is denoted by p(x), the integral equa-
tion of the crack equilibrium in the case under consideration can be
written in the form
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Here o, a(x' - X, Jo) are the stresses produced at point (X, yg
by a dislocation at point (x', yg); since the plate is assumed to be
infinite in the direction of the x-axis, these stresses depend only on
the difference x* - x. The remaining notation is as follows: Oyye(x)
are stresses which would act at point (x, yg) in the absence of a
crack; b is the Burgers vector of the dislocation; S(x) is the inter-
molecular attraction force,

Since nya (x' - X, yp) ~comst/(x' ~ x) as (x' - x) = 0, the
integral equation (1) is singular with respect to p(x), and the integral
is understood in the sense of its principal value,

After solving (1), we can determine the form of the crack from
the relation

h(z)=b\p(z)dz, @
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where h(x) is the height of the crack opening at a given point, We
consider solutions of (1) limited at zero, since otherwise, in accord-
ance with (2), the condition of the crack edges gradually closing at
the crack mouth is not satisfied [21

A necessary and sufficient condition for the existence of such a
solution is [3] that the following relation be satisfied:
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where the function w(x) is a solution of a conjugate uniform equation

corresponding to (1),
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Equation (3) is equivalent to the condition of the vanishing of
the coefficient of concentration of normal stresses produced near the
crack tip [2]. In addition, the presence of a crack produces a con-
centration of tangential stresses of the type T/(r)' % *, where r is the
distance from the crack tip, and T # 0 for the asymmetrical dis-
position of the crack shown in Fig, 1. These stresses can produce
tangential shear of the material along the extension of the crack
plane, i.e,, they can produce a transverse shear crack. However,
it is henceforth assumed that apart from the "normal” there are
"tangential® forces of molecular cohesion which are sufficiently
large to prevent the formation of transverse shear cracks.

It should be noted that cyya(t, Yo} = —nya(t, Vo) SO that
Eq. (4) is a self-adjoint equation and w(x) may be physically inter-
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preted as the density of dislocations that form a crack in the absence
of external loads.
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Fig. 1

1f the function w(x) is known, Eq. (3) makes it possible to
analyze the crack propagation in relation to a variable external load.
The main difficulty consists therefore in finding a solution of Eq. (4).

Although it is impossible to find this solution for the general
anisotropic case, all the substantial singularities of the function
w(x) necessary for the analysis of crack propagation can be ascertained.

Formulas in [4] describing the kernel oyya(t, Yo)s show that
all the length dimensions appear in the kernel in the form of a ratio
to the plate thickness 2h and that this kernel contains the ratio yo/h
as a parameter. Consequently, after introducing the notation § =
= 1x/2h it may be asserted that the solution of Eq. (4) is in the form
w(x) = pg (&, yo/h).

Moreover, since cyya(t, Yo) as t = 0 behaves as const/t, we
have—as follows from the theory of singular integral equations—
po(E) = A/(E)I/2 as £~ 0, where A = const # 0.

To study the behavior of the function py(£) at large &, let us
solve Eq. (4) by the Wiener-Hopf method. This method is used in
the case under consideration because the kernel is a difference kernel
and exponentially decreases at infinity [4]. As shown by Wiener and
Peli [§], the asymptote py(E) at infinity assumes the form

po(8) = 2 Q (8) ¢, )

where the sum is taken over the k* zeros of the Fourier transform
which are in the analyticity band of this transform, and Q(§) denote
polynomials of degree (n — 1) where n is the multiplicity of the
corresponding zero.

Let o (k) denote the Fourier transform of the function o ya (t, yo)
with respect to t; o(k) can be easily obtained from formulas in [4]
Let us obtain an expression for o(k) only for the case of a medium
with three mutuaily perpendicular planes of symmetry coinciding
with the coordinate planes.in Fig. 1 (a rhombic crystal or, in other
terms, an orthotropic medium). In this case we have
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Here sy, Sp, and d are values related in a certain way to other
constants of the medium; d depends also on the Burgers vector {6, Tl
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Simple calculations using expressions (6), (7), and (8) show that
the point k = 0 contained within the analyticity band of the function
o(k) is a triple zero of this function.
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Fig. 2

It may therefore be concluded on the basis of (5) that p,(€) in-
creases at infinity at a rate not slower than g%, Such an asymptote
po(€) at infinity can be also obtained on the basis of the following
simple physical considerations. Let us treat the breaking part of
the plate as a beam fixed at the crack mouth and let h(x) denote
the deflection of this beam. It is known (see for instance [1]) that
this deflection satisfies an equation h™(x) = 0, in the absence
of external forces. A general solution of this equation will be a
third degree polynomial; the coefficient of the highest degree of x
in this polynomial is, generally speaking (i,e., for arbitrary boundary
conditions) nonvanishing, At infinity we therefore have h(x) ~ 2
and, consequently, (according to (2)), po(X) ~ <,

The foregoing considerations suggest that in the genera! anisotro-
pic case py(§) = & ar infinity; however, this conclusion could be
rigorously substantiated only by carrying out extremely tedious trans-
formations.

Physical considerations also show that py(§) should be of constant
sign (positive to ensure determinacy). This is because py(&) describes
the distribution of dislocations in the absence of external forces.

If the sign of pe(&) changed at a certain point, it would mean that
dislocations of different signs are in equilibrium in the vicinity of
this point; this is impossible since dislocations of different signs
would attract and annihilate each other.

Finally, let us demonstrate the uniqueness of the solution of
Eq. (4). As is known from the theory of the Wiener-Hopf method,
every solution of Eq. (4) is in the form

Btiso
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where & _(u) is a definite function and Pn(u) is a certain polynomial
Py (u) =anu” + Gy u L a

If the following notation is introduced :

B+ioo

1
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po(E) can be written in the form
po(E) = anf™ (E) + 4, J ™V E) + ...+ aof (B). 9

On the other hand, as shown above, py(£) as £ = 0 should have
a singularity in the form const/ (&Y, Tt is obvious that this singularity
should be produced by a term with the higher derivative in (9), since
otherwise the function py(£) would have a more pronounced singularity
at zero. If there were two or more linearly independent solutions
in the form of Eq. (9), the coefficient of the higher derivative of
function (&) could be made to vanish by constructing their linear
combination (by an appropriate method) and the function obtained
would not have the required singularity at zero, The contradiction
obtained proves the uniqueness of the solution of Eq. (4).

It may therefore be postulated that the graph shownin Fig. 2 is an
approximate representation of the function pg(£). This graph has one
minimum, though the possibility of there being more than one

minimum cannot be excluded a priori.

The above general considerations can be graphically illustrated
on the example of a special case, in which it is possible to obtain
an integral representation for the function po(£). Let us consider the
case in which (sq + 59)/(s; = Sp) =2, yp=0, and lets; - s, =5,
ik = u. In this case, accurate to an insignificant constant factor,
we have

o (u) = tg®1/2 hsu. (10)

Expression (10) is obtained from (6), (7), and (8) taking into
account the above listed conditions,

It is possible to factorize the expression for o(u), as is required
in the Wiener-Hopf method, and to obtain an integral representation
for pp(k). Factorizing (10} with the aid of the I' -function and then
using the convolution theorem, we find

0o (B) = 4F () + Bf (B), (11
where
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In Eq. (11) A and B are certain constants; A > 0, B =0, The
integration interval D in (12) is a simplex determined by inequalities

7120, >0, >0, 7+t <E.

Using expressions (11) and (12), one can easily see that py(£) ~
~ 1/(5)1/2 as £ = 0 and py(E) ~ £ as £ = , i,e., the behavior
of this function at zero and at infinity is precisely as predicted by
general considerations,

If only the general form of function py() is known (Fig. 2),
it is still possible qualitatively to describe the propagation of a crack
along a plate in relation to an external load. To this end let us
consider an imporant specific case in which cyye(x) =P&(x - 1),
i,e., when the crack is kept open by concentrated forces P applied
at a distance ! from the crack mouth,

Let us consider the dependence of the crack "length” on the
external load P, This relation is given in implicit form by Eq. (3)
which in this case becomes

§OS (%) po (—g{—) dxr = Ppy (—;%) (13)
b

It should be noted that p, depends also on yy/h and on the para-
meter, If it is borne in mind that S(x) =0 only at small x [2] and if
the behavior of py(€) and the determination of the adhesion modulus
M [2] are taken into account, Eq. (13) can be written in the form

Ay /By M VE = Pp, (nl2k, yo/ b). (149

Equation (14), which gives the relation between P and !, should
be solved graphically (Fig. 3). The curved and straight lines in
Fig, 3 correspond, respectively, to the right and left hand sides
of Eq. (14). Data in Fig. 3 show that two crack lengths correspond
to each load: I, corresponding to a stable crack and Z; to an unstable
crack [21.
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Let us imagine the following experiment: an artificial crack
(notch) is made in the plate after which concentrated load, increasing
from zero at an infinitely slow rate is applied to the edge of the
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crack at a distance ! from its mouth, The results will be as follows:
if 1 < 1, (inFig. 3 we have I = 14}, no crack propagation will

take place until the load reaches a level corresponding to 7y (point 1).

As the load is further increased, the crack will grow until its length
reaches 1, at which rupture will take place. If, however, 1> I,
(in Fig. 3 we have [ =13), no crack propagation will take place
with increasing load, and rupture will take place when the load
reaches a level corresponding to 5.

The critical length {_ is found ftom the condition

oo (stls / 20) = 0, (15)

i.e., I, = C(yp/Mh. As was to be expected, the critical length at
a given yo/h is proportional to the plate thickness, The breaking
load P, is found from a relation which follows from (14)

A(!Io/h)
Pe="tal, f2h oy M Vi (16)

A similar dependence of the breaking load on the plate dimen-
sions was obtained in [2]by a method of dimensional analysis.

It should be noted that the abscissa and the ordinate of point 0
in Fig. 3 represent the critical length and the critical load.

If the load is not concentrated but applied along a certain
Iength which is small in comparison with (b ~ yg), the qualitative
nature of crack propagation in the plate will remain the same,

To ascertain the form of the critical load as a function of yy/h,
let us consider the equilibrium of an aggregate of screw dislocations
whose distribution is also shown in Fig, 1. The problem is interesting
in itself, since an aggregate of dislocations of this kind may be
physically regarded as a twin {8] of a special type or as a longitudinal
shear crack {9].

Proceeding as above, one can derive the equation of screw-
dislocation equilibrium which, for the case of an isotropic medium,
has the form

o0
z)
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0
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where p is the shear modulus,

Consideration of anisotropy in this case reduces to multiplying
ve 2nd h by a constant which depends on the elasticity moduli of
the medium, The kernel of (17) can be obtained from formulas in
[4]. A uniform equation corresponding to (17) can be also solved by
the Wiener-Hopf method, in which case we obtain

Y+ico
a8 a—auB—Bu T (au)l Bu) “
Po(8) = E"T_iy_gm D) ¢ Ed?‘ ’
E=mnz/2h, 10, a=Ys(1—ys/h),
B=1//’(1+y,0/h)’ a+B=1. (1®)

Let us examine certain properties of the function py(£).

Equation (18) makes it possible to study the behavior of pa(¥) at
large and small £, In accordance with known theorems (see for
instance [107)

Po (o0) = Lim ufF (u),

U0

00 (0)=lLimuF (uy.  (19)

Here F(u) is a Laplace transform of the function py(£). In the case
under consideration

. o uB-BUD (o T Bu
Fu)=1aB —-—‘—17(-(1")>_(‘-—)
In (19) it is assumed that limits on the right side exist.
Using the first formula of (19), we obtain that py(=) = 1.
Consuieranons analogous to those previously used show that
polE) ~ 1/(5) as £ —> 0, so that the second formula of (19) cannot
be directly used. However, it can be applied to the difference
between pp(£) and an arbitrary function which as £ — 0 behaves as
const/(£)} /2. A function that can be conveniently used for this purpose

has a form A/(1 - e_zg)x/z . The Laplace transform of this function
has the form

AVarl(au

B0 = Tur

Applying the second formula in (19) to the difference

po(®)—A) VI,

and stipulating that this difference vanish as £ = 0, we find constant
A, Thus, A is found from the condition

. [ AR @) T (Be)  AVaT (Yau)
lim | 28 T () T T ) =0.

U->00

Removing the limit, we find

A=2VaB= V1 vyl . (20)

When the equilibrium of an aggregate of screw dislocations is
considered, it is possible to prove thai pe(€) is positive and mono-
tonic by purely mathematical means without resorting to physical
interpretation of this function,
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To this end it should be noted that Eq. (18) can be rewritten in
the form

3 Y+ico
po (E) = o S B (an, Bu) GUE—alne—5Inal g,
Y—ioo
Here B(p, q) is the Euler beta-function, Using the known integral
representation of the beta-function, one can write

Y+iJo 1 :
po (8) = )11 tS Pl — t)ﬁu—l dl:l uli—alna—581n8) g,
y—ico 0
1 y+ico .
a3 | dt ‘l
=H57ﬁ—_t) g ezp[u(gq—uln—-i—ﬁln dy =
Y=

. * dt A( . 4 1~
=138mo Ealn g+ 8la—g )
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Let us now use a knowh relation:

. 8@ —t,)
S (e > e K
e 2; W0 |

Here t) is the root of equation ¥(t) =
It is easy to show that equation

E - ln o T B ln =0,

has two roots within the interval (0, 1); let these be denoted by ty(€)
and tx(€) so that 1;(§) = a, t;(£) = o and de,/dg < 0, di,/dE > 0,
In this notation

1 1
po (€)= <|1_zl(g)1 + |x—lz(E)\)’

The above expression shows (if the above cited properties of
functions t4(£) and t,(E) are taken into account) that py(€) is positive
and monotonically decreasing. It should be noted that in the special
case in which the twin (longitudinal shear crack) is in the middle of
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the plate, it is possible to calculate integral (18) in elementary funcr
tions, In this case

poB =1/ 1—e"%.

Let us again consider a specific case of an external load o€, (x) =
= P§(x -1 ). Formulating a condition of orthogonality analogous to
(3), we obtain (taking into account Eq. (20) and the behavior of
po(E) as £ — 0) the following equation describing the dependence
of [ on P;

VI—yd /R M YV h= Ppo(nl/2h). (21)

A graphical solution of (21) is shown in Fig. 4, where the cuive
corresponds to the right side of Eq. (21) and the straight line to the
left side. Analysis of Fig. 4, leads to the following conclusions re-
garding the growth of the twin under the influence of increasing P.
When the load is increased, the twin length will gradually increase
and, when the load reaches a certain level, the twin will occupy the
entire length of the plate. This differs from the propagation of a nor-
mai fracture crack in that, as shown in Fig. 4, the conceptof acritical
length is meaningless in this case: the twin length will gradually in-
crease, becoming infinite in the limit as P> P_. As for the breaking
siress, it is given by

Po=VIi—y/BEM V. (22)

Equation (22) describes the dependence of P, on yy/h. It will
be seen that as y, increases from zero to h, the breaking stress de-
creases from its maximum value M(h)1 /2 to zero., If h —> « and
yo = < but with (h - y,) =@, where a is constant, we have

P> M7V2.

It should be pointed out that the adhesion moduli for a twin and
a crack are, generally speaking, different,

The dependence of the breaking stress on the distance between
a crack and the plate boundary in the case considered above for a
normal fracture crack will be analogous to (22).

The author wishes to thank G. I, Barenblatt and A. M, Kosevich
for their vaiuable advice and L. A, Pastur for his assistance in the
work.
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