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Let us consider a semi-infinite crack in an anisotropic plate 
whose thickness is 2tl. It is assumed that the plane of the crack is 
parallel to the plate boundaries and that it is kept open by certain 
external stresses. The positioning of the crack relative to the plate 
boundaries is shown in Fig. 1; a plane problem is being considered. 
Let us study the propagation of the crack as a result of an increase 
in the external load. 

A narrow equilibrium crack may be formally described [1] as 
an aggregate of equilibrium dislocations at the crack edges. The 
Burgers vectors of these dislocations are normal to the crack plane. 
This approach is identical with the method developed by Barenblatt 

[21. 
If the dislocation density is denoted by p(x), the integral equa- 

tion of the crack equilibrium in the case under consideration can be 
written in the form 

oa 

% u ~  y o ) p ( x ' ) d x ' = - ~ [ S ( ~ ) + % ~ ( ~ ) ] .  (1) 
0 

Here oyu 0(x' - x, Y0) are the stresses produced at point (x, Y0) 
by a disloca'fion at point (x' ,  y0); since the plate is assumed to be 
infinite in the direction of the x-axis ,  these stresses depend only on 
the difference x'  - x. The remaining notation is as follows: Oyye(x) 
are stresses which would act at point (x, Y0) in the absence of  a 
crack; b is the BurgerS vector of the dislocation; S(x) is the inter- 
molecular attraction force. 

Since Oyy o (x' - x, Y0) ~ const / (x '  - x) as (x' - x) ~ 0, the 
integral equation (1) is singular with respect to p(x), and the integral 
is understood in the sense of its principal value. 

After solving (1), we can determine the form of the crack from 
the relation 

x 

h (x) = b ~. p (~:) d x ,  (2) 
0 

where h(x) is the height of  the crack opening at a given point. We 
consider solutions of (1) limited at zero, since otherwise, in accord- 
ance with (2), the condition of the crack edges gradually closing at 
the crack mouth is not satisfied [2]. 

A necessary and sufficient condition for the existence of such a 
solution is [8] that the following relation be satisfied: 

oa 

$ o (z) iS (x) -1- 6uy e (x)] dx  = 0, (3) 

where the function co(x) is a solution of a conjugate uniform equation 
corresponding to (1), 

oo 

~(o (x') %v ~ (~ - -  ~', yo) = (4) dx' 0.  
0 

Equation (3) is equivalent to the condition of the vanishing of 
the coefficient of concentration of normal stresses produced near the 
crack tip [2]. In addition, the presence of a crack produces a con- 
centration of tangential stresses of the type T/(r)  t / a ,  where r is the 
distance from the crack tip, and T # 0 for the asymmetrical  dis- 
position of the crack shown in Fig. 1. These stresses can produce 
tangential shear of the material along the extension of the crack 
plane, i . e . ,  they can produce a transverse shear crack. However, 
it is henceforth assumed that apart from the "normal" there are 
"tangential"  forces of molecular cohesion which are sufficiently 
large to prevent the formation of transverse shear cracks. 

It should be noted that Oyy0(t, Y0) = --~ t, y0), so that 
Eq. (4) is a self-adjoint equation and co(x) may be physically inter- 

preted as the density of dislocations that form a crack in the absence 
of external loads. 

I 

Fig. 1 

If the function co(x) is known, Eq. (3) makes it possible to 

analyze the crack propagation in relation to a variable external load. 

The main difficulty consists therefore in finding a solution of Eq. (4 I. 

Although it is impossible to find this solution for the general 

anisotropio case, all the substantial singularities of the function 
w(x) necessary for the analysis of crack propagation can be ascertained. 

Formulas in [4] describing the kernel Oyy0(t, Y0), show that 

all the length dimensions appear in the kernel in the form of a ratio 

to the plate thickness 2h and that this kernel contains the ratio y0/h 

as a parameter. Consequently, after introducing the notation ~ = 

= vx/2h it may be asserted that the solution of Eq. (4) is in the form 

w(x) ------ p0(~, yo/h). 
Moreover, since OyyO(t, Y0) as t--~ 0 behaves as const/t, we 

have-as follows from the theory of singular integral equations- 

P0(~) ~ A/(~) I/z as ~ -* 0, where A = const ~ 0. 

To study the behavior of the function P0(~) at large E, let us 

solve Eq. (4) by the Wlener-Hopf method. This method is used in 

the case under consideration because the kernel is a difference kernel 
and exponentially decreases at infinity [4]. As shown by Wiener and 
Peli [5], the asymptote P0(U at infinity assumes the form 

po (~) ~ ~ q (~) e a*~, (5) 

where the sum is taken over the k* zeros of the Fourier transform 
which are in the analyticity band of this transform, and Q(U denote 
polynomials of degree (n -- 1) where n is the multiplicity of the 
corresponding zero. 

Let o (k) denote the Fourier transform of the function Oyy 0 (t, Y0) 
with respect to t; o(k) can be easily obtained from formulas in [4]. 
Let us obtain an expression for o(k) only for the case of a medium 
with three mutually perpendicular planes of symmerty coinciding 
with the coordinate planes.in Fig. 1 (a rhombic crystal or, in other 
terms, an orthotropic medium). In this case we have 

�9 2id 5 (k) 
(a-) = V ~  ( ~  - -  s~) A ( k )  ' ( 6 )  

~(k) = 

e ~s'~ - -  e I's~7~ sh ksl (h - -  Yo) sh ks~ (h - -  Yo) , 

e -l'~'r~ - -  e -~s~'~ - -  sh ks1 (h + Yo) - -  sh ks: (h  + Yo) (7)  

s~e ~s~r~ - -  s.,_e ~s")~ sl ch ks1 (h - -  yo) s~ eh ks2 (h - -  yo) 

sle-~S,h _ s.,.e-1,s~,~ sl ch k$1 (h + yo) $2 ch k8 2 (h ~- Yo) 

A (k) = 4 (s~ - -  s2)'- (sl + s..0 ~ X 

x ~  Sh~-k(s, 4-s~.)h s h 2 k ( s l - - s ~ . ) h  ] 

h~ = s2 sh ks1 (h - -  yo) - -  s~ sh ks~ (h - -  Yo), 

I~1 = sts~ [ch ks1 (h  - -  Yo) - -  ch ks.,. (h - -  go) ] .  ( 8 )  

Here s I, s s, and d are values related in a certain way to other 
constants of the medium; d depends also on the Burgers vector [6, 7]. 
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Simple calculatinm using expressions (6), (7), and (8) show that 
the point k = 0 contained within the analytinity band of the function 
o(k) is a triple zero of this function. 

Fig. 2 

It may therefore be concluded on the basis of (5) that P0 (g) in- 
creases at infinity at a rate not slower than gz. Such an asymptote 
P0(g) at infinity can be also obtained on the basis of the following 
simple physical considerations. Let us treat the breaking part of 
the plate as a beam fixed at the crack mouth and let h(x) denote 
the deflection of this beam. It is known (see for instance [1]) that 
this deflection satisfies an equation h " ( x )  = 0, in the absence 
of  external forces. A general solution of this equation will be a 
third degree polynomial; the coefficient of the highest degree of x 
in this polynomial is, generally speaking (i. e . ,  for arbitrary boundary 
conditions) nonvanishing. At infinity we therefore have h(x) ~ x z 
and, consequently, (according to (2)), p0(x) ~ x ~. 

The foregoing considerations suggest that in the general anisotm- 
pic case P0(g) ~ g2 at infinity; however, this conclusion could be 
rigorously substantiated only by carrying out extremely tedious trans- 
formations. 

Physical considerations also show that P0(g) shonld be of constant 
sign (positive to ensure determinacy). This is because P0(g) describes 
the distribution of dislocations in the absence of external forces. 
If the sign of P0(g) changed at a certain point, it would mean that 
dislocations of different signs are in equilibrium in the vicinity of 
this point; this is impossible since dislocations of different signs 
would attract and annihilate each other. 

Finally, let us demonstrate the uniqueness of the solution of 
Eq. (4). As is known from the theory of the Wiener-Hopf method, 
every solution of Eq. (4) is in the form 

/~q-ico 

'S  Po(~) = ~ Pn(u) O_(u)eU~du, 
~-ioo 

where q,_(u) is a definite function and Pn(U) is a certain polynomial 

Pn(u) = a,~u ~ + %_ru "-r + . . .  + no. 

If  the following notation is introduced : 

~ + i o o  
t 

/ ( ~ ) = ~ i  I q)-(u)eU~du" 
I~-ioo 

Prig) can be written in the form 

p0 (~) = a,J (n) (~) q- %_z](n-r) (~) q _ . . .  + a./(~). (9) 

On the other hand, as shown above, P0(g) as g --* 0 should have 
a singularity in the form const/(g)lf l .  It is obvious that this singularity 
should be produced by a term with the higher derivative in (9), since 
otherwise the function P0(g) would have a more pronounced singularity 
at zero. if  there were two or more linearly independent solutions 
in the form of Eq. (9), the coefficient of the higher derivative of 
function ~(g) could be made to vanish by constructing their linear 
combination (by an appropriate method) and the function obtained 
would not have the required singulariry at zero. The contradiction 
obtained proves the uniqueness of  the solution of Eq. (4). 

It may therefore be postulated that the graph shownin Fig. 2 is an 
approximate representation of the function Po(g). This graph has one 
minimum, though the possibility of there being more than one 

min imum canno~ be excluded a priori. 
The above general considerations can be graphically illustrated 

on the example of a special case, in which it is possible to obtain 
an integral representation for the function P0(~). Let us consider the 
ease in which (s l + sz)/(sl - s 2) = 2, Yo = O, and let s x - % = s, 
ik = u. In this case, accurate to an insignificant constant factor, 
we have 

(u) = tg3t/2 hsu. (10) 

Expression (10) is obtained from (6), (7), and (8) taking into 
account the above listed conditions. 

It is possible to factorize the expression for o(u), as is required 
in the Wiener-Hopf method, and to obtain an integral representation 
for P0(g). Factorizing (10) with the aid of the F -function and then 
using the convolution theorem, we find 

where 

po (~) = A f  (~) + B / (~) ,  (11) 

[ ( E ) =  -~- [ ( t - -e-~L~(l - -e- '~)  (1--e-:3)] ''* " (12) 

In Eq. (11) A and B are certain constants; A > 0, 13 - 0. The 
integration interval D in (12) is a simplex determined by inequalities 

Wl>~O, %~0, ~3>~0, xI+~2+~3<~ 

Using expressions (11) and (12), one can easily see that Po(g) N 
N 1/(g)t/2 as g ---* 0 and P0(g) N ~z as g --~ ~, i . e . ,  the behavior 

of this function at zero and at infinity is precisely as predicted by 
general considerations. 

If only the general form of function P0(g) is known (Fig. 2), 
it is still possible qualitatively to describe the propagation of a crack 
along a plate in relation to an external load. To this end let us 
consider an important specific case in which ~yye(x) = P6(x - l ), 
i . e . ,  when the crack is kept open by concentrated forces P applied 
at a distance Z from the crack mouth. 

Let us consider the dependence of the crack "length" on the 
external load P. This relation is given in implicit  form by Eq. (3) 
which in this case becomes 

c o  

0 

It should be noted that P0 depends also on y0/h and on the para- 

meter. If it is borne in mind that S(x) ~0 only at small x [2] and if 

the behavior of P0(~) and the determination of the adhesion modulus 
M [2] are taken into account, Eq. (13) can be written in the form 

A (Yo / h) M ]/~= Ppo (~I/2h, yo / h). (14) 

Equation (14), which gives the relation between P and Z, should 
be solved graphically (Fig. 3). The curved and straight lines in 
Fig. 3 correspond, respectively, to the right and left hand sides 
of Eq. (14). Data in Fig. 3 show that two crack lengths correspond 
to each load: I z corresponding to a stable crack and /2 to an unstable 
crack [2]. 

I I 4 
I 

4 Z. 5 x 

Fig, 3 

Let us imagine the following experiment: an artificial crack 
(notch) is made in the plate after which concentrated load, increasing 
from zero at an infinitely slow rate is applied to the edge of the 
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crack at  a dis tance I from its mouth. The results wil l  be as follows: 

i f  Z < l .  ( in Fig. g we have  I = lx), no crack propagat ion wi l l  
take  p lace  unt i l  the load reaches a l eve l  corresponding to I t  (point 1). 
As the load is further increased, the crack wi l l  grow unt i l  its length  

reaches l .  a t  which rupture wi l l  take place .  If, however,  l > ~. 

(in Fig. 3 we have  l = lz ), no c rack  propagat ion wi l l  take  p lace  
with increasing load, and rapture wi l l  take  p lace  when the load 
reaches a l e v e l  corresponding to Iz .  

The c r i t i ca l  length  l ,  is found from the condit ion 

P0' (~xI. / 2h) = 0,  (15) 

i .  e . ,  ~. = C(y0/h)h. As was to be  expected,  the c r i t i ca l  length at  

a g iven y0/h is proportional to the p la te  thickness.  The breaking 
load P. is found from a re la t ion  which follows from (14) 

A (yo / h) 
P * =  po(a l . /2h ,  yo/ h) M "{/'~ . (16) 

A s imi la r  dependence of the breaking  load on the p la te  d imen-  
sions was obtained in [2] by a method of d imens iona l  analysis.  

I t  should be noted that  the abscissa and the ordinate of point 0 
in Fig. 3 represent the c r i t i ca l  length and the c r i t i ca l  load. 

If the load is not concentrated but applied along a cer ta in  
length which is smal l  in comparison with (h - Y0), the quaI i ta t ive  
nature of c rack  propagat ion in the p la te  wi l l  remain  the same.  

To ascer ta in  the form of the c r i t i ca l  ioad as a function of y0/h, 
l e t  us consider the equi l ibr ium of an aggrega te  of screw dislocations 
whose distr ibution is also shown in Fig. I .  The problem is interest ing 

in i tself,  s ince an aggrega te  of dislocations of this kind may be  
physical ly  regarded as a twin [8] of a spec ia l  type or as a longi tudina l  
shear crack [9]. 

Proceeding as above, one can  der ive the equat ion of screw- 
d is locat ion equi l ib r ium which, for the case of an  isotxopic medium,  
has the form 

a (z" - -  ~) 
p (x') ~ [2 eth ~ - -  th  ~h- [(x' - -  x) 1- 2iyo] - -  

o 

- ~h ~h I ( ~ ' -  ~ ) -  ~ o ]  / ~ "  = 
% 2a 

[s (~.) + %~ (~)1, (17) 

where ~ is the shear modulus. 

Considerat ion of anisotropy in this case reduces to mul t ip ly ing  
y~ and h by a constant which depends on the e las t i c i ty  mnduli  of 

the medium.  The kernel of (17) can  be  obtained from formulas in 

[4]. A uniform equation corresponding to (17) can be also solved by 
the Wiener-Hopf  method, in which case we obtain 

:~{3 -r 

r (u) e ~< d~ , 
"r 

~ = ~ x / 2 h ,  ~ 0 ,  o t = l ] ~ ( t - - y o / h ) ,  

~ = ~ / ~ ( t + y o / h ) ,  = -}- ~ = i .  (18) 

Let us examine  cer ta in  properties of the function p~(g). 
Equation (18) makes i t  possible to study the behavior  of P0(g) at 

large and smal l  g. In accordance  with known theorems (see for 

instance [10]) 

Po (oo) = lira uF (u), po (0) = l im uF (u). (19) 
u~0 u-,co 

Here F(u) is a Laplace transform of the function P0(~). In the case 

under considerat ion 

~ - ~ * ~ P  (~u) r ( ~ )  

In (19) i t  is assumed that  l imi t s  on the right side exist.  
Using the first formula of (19), we obtain that  p0(~o) = 1. 
Considerations analogous to those previously used show that  

P0(g) ~ 1/(~) ~/z as g ~ 0, so that  the second formula of (19) cannot  
be di rect ly  used. However, i t  can be appl ied to the difference 
be tween po(g) and an arbitrary function which as g -~ 0 behaves as 
const/(g)~/z. A function that  can be convenient ly  used for this purpose 

8 9  

has a form A/(I - e-Z~) I/z . The Laplace transform of this function 

has the form 

A V-~ r (lh u) 
F ~ ( . ) =  r ( % u + V z )  " 

Applying the second formula in (19) to the difference 

po(4)- A/ I/I--e -~  , 

and stipulating that this difference vanish as ~ --~ 0, we find constant 

A. Thus, A is found from the condition 

i m l  oou r (u) F 0b- u + ~/o.) 

Removing the l imi t ,  we find 

A = 2 1/~-~ = l / 1  - -  y0 ~- / h ~ . (20) 

When the equi l ibr ium of an aggregate  of screw dislocations is 
considered, i t  is possible to prove :_hat P0(g) is posit ive and mono- 
tonic  by purely m a t h e m a t i c a l  means without resorting to physical  
interpretat ion of this function, 

Fig. 4 

To this end it should be noted that Eq. (18) can be rewritten in 

the  form 

vq-ioo =3 
Po (4) = ~ I B (r162 ~u) e u[~-alna-~In~] du . 

Y--leo 

Here B(p, q) is the Euler beta- function. Using the known integral 

representation of the beta-function, one can write 

a'--ico 0 
1 vq-im 

2xi , ' t ( l - - t )  I exp ~ In ~ - - ] j  d~ = 
u y ~-~oo 

1 
l - - t  

Let us now use a knowfl relat ion:  

5 (t t~.) 

~c I ~' (%) I 

Here t k is the root of equat ion ~(t) = 0. 
I t  is easy to show that  equat ion 

t l - - t  
~ .  ~ in ~- -c [3 l n - - - ~  =0, 

h as two roots within the in terval  (0,1); le t  these be denoted by tl(g) 
and t2(g) so that  rt(g ) <- a ,  tz(g ) -> a and d q / d g  < 0, dtz/dg > O. 
In this notat ion 

po (4) = =,a . I ~ -- t~ (~) I ~- I ~ ----t~ (~) I 

The above expression shows (if the above ci ted properties of 
functions tl(g) and tz(g) are taken  into account) that  P0(g) is posi t ive 
and monotonica l ly  decreasing.  It  should be noted that  in the spec ia l  
case in which the twin ( longitudinal  shear crack) is in the midd le  of 
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the plate, it is possible to calculate integral (18) in elementary func- 
tions. In this case 

po (~) = 1 / t1/'i-~-- e -:=" 

Let us again consider a specific case of an external load Oeyz(X ) = 
= P6(x - l ). Formulating a condition of orthogonality analogous to 
(3), we obtain (taking into account Eq. (20) and the behavior of 
P0(~) as g --~ 0) the following equation describing the dependence 
of l on P: 

t]/--{~----yd/h ~ M ~ = PP0 (~xl/2h) (21) 

A graphical solution of (21) is shown in Fig. 4, where the curve 
corresponds to the right side of Eq. (21) and the straight line to the 
left side, Analysis of Fig. 4, leads to the following conclusions re- 
garding the growth of the twin under the influence of increasing P. 
When the load is increased, the twin length will gradually increase 
and, when the load reaches a certain level, the twin will occupy the 
entire length of the plate. This differs from the propagation of a nor- 
mal fracture crack in that, as shewn in Fig. 4, the concept of a critical 
length is meaningless in this case: the twin length will gradually in- 
crease, becoming infinite in the limit as P ~  P.. As for the breaking 
stress, it is given by 

P.  = ~ M ]/'h. (22) 

Equation (22) describes the dependence of P. on y0/h. It will 
be seen that as Y0 increases from zero to h, the breaking stress de- 
creases from its maximum value M(h) l/z to zero. I fh  --~ ~ and 
Y0 ~ ~ but with (h - Y0) =a ,  where a is constant, we have 

P, -~  M ] / ' ~ .  

It should be pointed out that the adhesion moduli for a twin and 
a crack ate, generally speaking, different. 

The dependence of the breaking stress on the distance between 
a crack and the plate boundary in the case considered above for a 

normal fracture crack will be analogous to (22). 
The author wishes to thank G. I. Barenblatt and A. M. Kosevieh 

for their vaiuable advice and L. A. Pastur for his assistance in the 

work. 
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